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SUMMARY

The objective of this program was to develop an advanced electro-optical system to measure
single blade tip clearances and average blade tip clearances between a rotor and its gas path seal
in rotating rigs and full scale gas turbine engines. This system is applicable to fan, compressor,
and turbine blade tip clearance measurement requirements, and the system probe is particularly
suitable for operation in the extreme turbine environment. The program effort included a study
of optical properties of blade tips, measurement system design and fabrication, and operational
and environmental performance evaluation tests to demonstrate measurement system capability.

The study of optical properties of blade tips investigated the optical properties of six typical gas
turbine engine blades which had been subjected to an engine operating environment. The
purpose of the study was to use the resulting optical properties data to determine the
measurement system application limitations in terms of available blade tip reflected laser energy
and distribution. The data were applied in defining the measurement system design criteria.

The measurement system consists of an optical subsystem, an electronic subsystem, and a
computing and graphic terminal. The optical subsystem provides the basic blade tip clearance
measurement by using an established correlation between blade tip clearance and the location of
a reflected laser spot on a linear photodiode array. The electronic subsystem provides the scan.
gate, and process functions required for single and average blade tip clearance measurements.
The computing and graphic display terminal provides optical and electronic subsystem control
and clearance data presentation.

Laboratory tests were conducted to determine the measurement system’s operational per-
formance characteristics and to demonstrate system capability under simulated operating gas
turbine environmental conditions. The operational performance evaluation tests included a static
calibration and a series of simulated rotating blade row tests. Results of the evaluation tests are
presented, and these results confirm the measurement system operational performance
characteristics. The environmental tests subjected the measurement system probe to vibration,
temperature, and pressure environments typically encountered in an operating gas turbine
engine. Results of these tests indicate no degradation in measurement system performance.
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INTRODUCTION

Blade tip to shroud clearance in an operating gas turbine engine is a critical parameter. Excess
clearance allows a portion of the engine gas to flow over the blade tip without performing work,
and insufficient blade tip clearance can jeopardize engine integrity. Previously, it has been
possible to measure average blade tip clearance over several rotor revolutions, but the type of
svstem (Refs. 1 and 2) used did not have adequate response for transient or single blade tip
clearance measurement. It is necessary that any system used for research and development be
capable of measuring and displaying single as well as average blade clearances. A practical means
of measuring single blade tip clearance did not exist.

The objective of this program was to develop an advanced fast time response svstem to measure
single blade tip clearances and average blade tip clearances in rotating rigs and full scale engines.
A series of laboratory tests was conducted to determine the measurement system’s operational
performance characteristics and to demonstrate performance under simulated engine test
conditions. Evaluation of these test results demonstrate that the measurement system
performance meets overall program goals.

The block diagram in Figure 1 depicts the major functional components of the system.

A rangefinder triangulation principle is used to detect blade tip clearance by means of an optical
probe assembly attached to the operating engine gas path seal. A helium-neon laser beam is
directed through lenses and fiber optic coupling to the probe where it is focused in the region of
the blade tip. The focused laser spot on the blade tip is imaged back through the probe, a
coherent fiber optic coupling, and lenses to a gated image intensifier.

The image intensifier amplifies the low intensity reflected laser spot and transfers it onto a linear
photodiode array. The spot’s linear position on the array, which represents the blade tip
clearance, is converted to a video signal.

A blade passing pulse train, detected by sensing a portion of the imaged laser spot prior to its
reaching the image intensifier. provides blade counting and synchronization information.

A Tektronix Model 4051 Computing and Graphic Display Terminal is programmed to provide
Optical and Electronic Subsystem control and clearance data presentation online in near real
time. The Electronic Subsystem interfaces between the 4051 and the Optical Subsystem.

Test variables (e.g., AVERAGE or SINGLE BLADE measurement modes. number of rotor
blades. clearance limits) are entered into the 4051 by the system operator via the 4051's kevboard.
The 4051 then activates the proper software programs and instructs the Electronic Suhsystem to
set the hardware in accordance with the preprogrammed test variable requirements. Com-
munication between the 4051 and the electronic hardware is accomplished via a General Purpose
Interface Bus.

Manually operated controls are provided on the Electronic Subsystem front panel for remote
adjustment of optical filters and lenses to optimize the linear photodiode array video output. An
image intensifier automatic gain control compensates for limited intensity variations.

In operation, the Electronic Subsystem processes the linear photodiode array output and
identifies the diode site corresponding to the blade tip clearance by picking the video signal peak.
The clearance information is presented to the 4051. The 4051 is programmed to convert diode site
information into clearance data in thousandths of an inch (mils).
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In the AVERAGE mode, the image intensifier is gated on continuously to vield an optical average
of all blades on the rotor, providing a reading each revolution.

In the SINGLE BLADE mode. the image intensifier is gated on to view only one bhlade at a time
as requested by the 4051. Each blade on the rotor is viewed in turn to vield data for the entire
stage. A NASA provided index pulse and the blade passing pulse train are used to synchronize the
gating process. A NASA provided synthesized blade passing pulse train may also be used.

Programs in the 4051 are used to format the clearance data for presentation on the graphic
terminal screen. AVERAGE data are presented in a plot of “Clearance versus Scan.” (a time
historv of average clearance). SINGLE BLADE Mode-1 data are presented in a plot of
“Clearance versus Blade Number.” and SINGLE BLADE Mode-2 data are presented in a plot of
single blade “Clearance versus Scan” (a time history).

This svstem is innovative in that it combines specific optical, electro-optical, electronic and
computer/graphic elements to measure and display average and single blade tip clearances in
rotating machinery over a wide range of rotational speed and with a variety of blade materials
and configurations.

The program was conducted in four major phases including:

e Optical Properties of Blade Tips Study

® Measurement Svstem Detail Design

® Operational Performance Evaluation

o Environmental Performance Evaluation

This Final Report addresses specifically these major program phases.
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I. OPTICAL PROPERTIES OF BLADE TIPS STUDY AND DISCUSSION OF RESULTS

A. STUDY OBJECTIVE

The blade tip clearance probe utilized in the Advanced Optical Blade Tip Clearance
Measurement System must function under a variety of engine running conditions and at various
engine station locations. This broad spectrum of application will subject the probe laser input to
a wide range of intensity distribution after interaction with the target blade tips of the fan,
compressor. or turbine sections. It would, therefore, be useful to investigate the laser energy
distribution resulting from interaction with a *‘representative”” sample of engine blades from each
of these sections. The purpose of this Optical Properties of Blade Tips Study was to make such
an investigation and to utilize the resulting data to help determine the application limitations of
the blade tip clearance probe.

B. SUMMARY OF STUDY RESULTS

The following conclusions were drawn from the study of the optical properties of six typical gas
turbine engine blades which had been subjected to an engine operating environment and from
predicted performance characteristics of the measurement system.

® The range of the laser intensitv detected from the test blades can be accommodated by the
measurement system.

e While a primarily specular (mirror-like) surface is desirable, the degree of diffusivity
(scattering) observed will not seriously impact the measurement system performance.

® The acquired signal level is not highly sensitive to probe rotation about the blade axis.

® Best performance of the blade tip clearance probe is obtained when the viewing angle is equal
to the angle of laser radiation incidence. This is the scheme utilized in previous svstems and
the system developed under this NASA contract.

The study was limited primarily to measuring the scattered/reflected intensitv distribution in the
plane containing the incident laser beam and the nominal reflected beam within the reflected
beam quadrant. for various angle of incidence and blade rotation positions.

The optical characteristics of the selected fan, compressor, and turhine blades. which were
subjected to an engine operating environment, were defined by determining the distribution of
6328A laser radiation scattered from the blade tips. A helium-neon laser beam, focused through
a lens. was the radiation source. The scattered light was collected by a fiber optic bundle which
simulates the approximate magnitude of a typical blade tip clearance probe acceptance cone.
The collected radiation was coupled to a photomuitiplier tube and read out on a digital
picoammeter.

The polar intensity distribution of the 6328A laser radiation was plotted as a function of the
intensity received by the detector, relative to the input laser intensity. A total of six blades were
studied: two fan blades. two compressor blades, and two turbine blades.

Results of this study substantiated the basic blade tip clearance probe design concept and
provided an understanding of the range of attenuation to the input laser energy produced by
interaction with the various blade tips.
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C. SCOPE OF STUDY

From a purely technical standpoint, the total hemispherical distribution of the laser radiation
after interaction with the blade tip should be defined for many angles of incidence from 0° to 90°,
In addition, many measurements from the same blade for different spot positions on the blade tip
should be averaged to remove effects due to variations in blade tip condition. The variations are
caused by localized wear patterns such as those due to machining or blade rubbing and will
introduce diffraction and interference intensity distribution effects. The coherent nature of the
laser radiation itself introduces another nonuniformity in the form of a speckle pattern. Anv blade
has a wide range of intensity distribution patterns that are position sensitive with respect to the
location of the incident focused laser spot on the blade tip.

For this study, certain limitations and measurement constraints had to be established in order to
efficientlv acquire a useful set of data for several fan. compressor, and turbine blades.

The scope of this study was, therefore, set by the following guidelines:

1. Two blades from each of the three engine sections would be studied.

2. The blades would be selected to be as representative of the most diffuse tip surface (that is.
those with highest scattering characteristics), or greatest engine operating exposure. as would

be possible with available sources of used hlades.

3. The area of the blade surface to be studied would be the central region. as this is the area
tvpically seen by the blade tip clearance probe.

4. The blade would be traversed in its direction of rotation. with an average signal level heing
recorded.

5. To test for effects due to blade tip condition, such as blade rub patterns. the hlade would be
rotated so that the incident beam aligned with the direction of blade rotation (0°). as well ax
normal to the direction of blade rotation (90°).

6. Only three angles of incidence would be utilized: 15°. 30°. and 45° with respect to the blade
tip normal. The angles selected were those which cover practical probe configurations.

~1

Data from the scattered radiation would be acquired only in the quadrant containing the
nominal reflected beam. The data points would be at 5° intervals within +15° of the nominal
angle of reflection, and at 15° intervals at other angles within the stated quadrant and onlv
in the plane containing the incident and nominal reflected beams.

8. Two additional data points would be acquired at +15° from the nominal angle of reflection
in the plane normal to the plane stated above and which also contains the blade tip laser spot.

The size of the spot incident upon the blade tip is of the same magnitude as some of the surface
variations, and therefore, small variations in the spot position can introduce a large variation in
the detected signal. Traversing the blade tip will tend to minimize this variation. but even this
average can be expected to vary over the width of the blade tip. However. this variation will not
unduly impact the blade tip clearance probe performance.
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D. STUDY METHOD

The Optical Properties of Blade Tips Study test arrangement is shown in Figure 2. A helium-neon
laser source was reflected from mirror M, to mirror M, which directed the laser beam toward the
test blade and defined the angle of incidence, §,. This incident laser beam was focused to
approximately a .13 mm diameter spot on the blade tip by the lens L. Mirrors M, and M, as well
as lens L were adjustable so that the angle of incidence to the blade tip could be conveniently
changed.

The test blade itself was mounted on a base with five degrees of freedom: X-Y translation, Z
rotation, and X-Y tilt. The X-Y tilt was required to align the blade tip normal to the vertical axis
of the optical table.

The scattered radiation was collected by a 3 mm diameter fiber optic bundle placed 50 mm from
the blade tip. This resulted in an acceptance cone of 2.8 X 10-* steradians. This was selected as
a conservative approximation to the probe acceptance angle of approximately 8.0 x 107
steradians. This difference is of little consequence since the reflected signal values can be easily
scaled within the small range of variation.

The fiber optic bundle was mounted so as to allow free rotation within the quadrant containing
the nominal angle of reflection. Movement of the bundle tip in the plane normal to the plane
containing the incident and nominal reflected beam and passing through the blade tip was
accomplished by repositioning the fiber optic mounting structure.

The radiation collected by the fiber optic bundle was transferred to a photomultiplier tube which
was read out on a digital picoammeter.

The photomultiplier was calibrated relative to the output intensity (I,) of the laser source. The
data can therefore be converted to intensity received by multiplying the laser intensity by the
intensity ratio (I/I,) given in the data plots.

For each value of 8,, (15°, 30°, and 45°) the fiber optic bundle was set at the nominal angle of
reflection and at 5° intervals for +15° about the nominal angle of reflection, as well as each 15°
for the other positions within the nominal reflected beam quadrant (a).

Data were also taken for +15° from the nominal angle of reflections in the plane normal to the
above plane and which contained the blade tip (+8).

Both sets of data were taken for each of two blade rotation angles, 0° and 90°, with respect to the
direction of blade rotation (¢).

For each data point, the blade tip was translated in its normal direction of rotation with the
resulting intensity variations averaged, keeping only two significant digits.

E. STUDY TEST DATA

The acquired data were plotted on 3 cycle logarithmic polar graph paper. A typical plot is
presented in Figure 3. The data points for the plane containing the incident and nominal reflected
beams () are shown circled with solid lines connecting each point. The data points for the plane
normal to the plane just described and containing the nominal reflected beam (8) are shown
within triangles and connected by dashed lines. The logarithmic scale is the dimensionless ratio
of the detected intensity, I, to the output laser intensity, I, and this intensity ratio is plotted as
a function of angle of observation.



FR-10200A

jese] UoaN-wn|eH

dnjag Apmg sdi] apoig jo sandadodd jpond() g a4ndy

N

(41
JOMIW

JOINN

19}0WWB0d|\d

1lenbia

O
_ E-SE

epe|g
1881

N
(1eded }Jo ausB|d 40 INQ pus U|) §F .

v+

1$¢.0LX82=0

epino Wb
ondo Jeqiy



FR-10200A

o130y A1suadgu] | J2Qunp apolg g g

(¢) .0 = uopnBioy epe|g jJo 8jBuy
(l9) .Sy = eouep|ou| jo 8jBuy

-06

oSl

09 &

oG¥

006 T Trir0 17 1 Tvov T TV 1Y 1 TV 1 1T T1TT1il 1
s IT
oGl 4
~ T
$-0l
-
209 1
/ e o
/ T
\ T
m”'OF /«
-T
omv ——
g sA O/t uq +
-0l
o sA Oy = 4
/\ @ i
/
.0€ oSl 0 oSl -0E



FR-10200A

Six plots were generated for each blade studied and correspond to the three angles of incidence
(8, = 15°, 30°, 45°) at each of the two angles of blade rotation (¢ = 0° and 90°).

F. DISCUSSION OF RESULTS

In considering the results of this Optical Properties of Blade Tips Study, it will be instructive to
begin with a general inspection of the qualitative data. The shape of the scattered radiation
indicates that, for the most part, the pattern is diffuse as demonstrated by the broad appearance
of the radiation lobes. The specular component is, however, manifest in the peak response at, or
within, 5° of the nominal angle of reflection. The slight variation of this peak position can be
explained by small misalignments of the blade tip normal with the optical table vertical, as well
as by the local scattering pattern.

Two exceptions to the generally diffuse behavior were seen in the data for Blade #1, First Stage
Fan blade, and Blade #4, Twelfth Stage Compressor blade. Both of these blades show narrow.
peaked lobes, with those of Blade #1 being more specular. This would indicate that the area on
the blade tip in the region of the focused laser spot was uniform providing a primarily specular
surface, which is a desirable characteristic.

Quantitatively the data generally support the observations just made concerning the
specular/diffuse characteristics of the data. That is, the more diffuse surface producing a broad
lobe would spread the incident radiation over a large area; thus, resulting in a lower peak
intensity.

Figure 4 is a logarithmic plot of the nominal reflected angle intensity ratio for each blade tip.
Points for the same blade are connected to each of the six incident/rotational configurations of the
blade. From this plot it is first apparent that the intensity ratio for the six blades ranges from
approximately 4 X 10~* to about 1 X 10-*. This range can be accommodated by the measurement
system.

It can also be seen from this plot that the blades demonstrating more specular properties possess
generally higher values of I/1,. Those blades with more diffuse patterns, as well as more absorbing
surfaces, fall to lower values.

While the data do not show strong rotational effects, there was observed a distinctive diffraction
pattern that was dependent on the rotational position of the blade tip. In particular, when the
blade was rotated so that the wear pattern was at right angles to the incident beam (¢ = 90°).
there was a bright laser radiation pattern in the plane containing the incident and nominal
reflected beams. This dispersion effect was caused by the grooved pattern on the blade tip. When
the blade tip was rotated, the radiation pattern rotated as well, so that when the tip had been
rotated 90° to ¢ = 0°, the pattern had also rotated 90°. This pattern falls bevond the field of view
of the probe and has no significant impact on the measurement system performance.

The coherent laser radiation also produced a granular speckle pattern over the entire scattering
hemisphere. This speckle pattern resulted in a rapidly varying signal level as the fiber optic tip
was slowly moved. This caused difficulty in establishing the representative signal level, as well as
in reproducing the signal level at a given point. This effect was apparent when attempting to take
data at the +( angles and appeared as intensity variations in the « and g angle data points. The
measurement system, however, will see the average of these effects with no significant impact on
performance.

10
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G. STUDY CONCLUSIONS
This study demonstrated two significant system operational principles:

1. The validity of the blade tip clearance probe viewing configuration being based on sensing the
specular component of the scattered radiation pattern.

2. The range of the detected intensity being approximately from 4 X 10-2to 1 X 10-¢ of the
incident laser energy after interaction with the blade tip, which can be accommodated by the

measurement system.

These two principles were utilized in assessing the throughput characteristics of the Advanced
Optical Blade Tip Clearance Measurement System.

In addition, the following system application information was acquired:

1. Usefulness of the probe system in the fan, compressor, and turbine areas is dependent, but
not critically, on the specular nature of the blade tips. An increase in the diffuse character of
the blade tip, within the range seen by this study, will not seriously impact the measurement

system performance.

2. There is little difference in the signal level received by the probe for a tip rotational position
of 0° or 90° with respect to the direction of blade rotation.

In general, the blade tips studied show no characteristics which would detract from the validity
of the Advanced Optical Blade Tip Clearance Measurement System design concept, either in
operation or application.
1. SYSTEM DESIGN REQUIREMENTS SUMMARY
A. The Advanced Optical Blade Tip Clearance Measurement Svstem primary operational
performance design goals were as follows:

® Tip Clearance Measurement Range — 0 to 0.120 inches (0. to 3.05 mm)

® Measurement Accuracy — +0.002 inches (+0.0508 mm)

® Measurement Resolution — +0.001 inches (+0.0254 mm)

e Capability of Static Calibration

® Measurement of Average and Single Blade Clearance Measurement on a 120 Blade
Rotor at the following conditions:

Rotor Speed - 600 RPM to 60.000 RPM
Blade Tip Speed ' - 61.0 m/sec (200 ft/sec) to
609.6 m/sec (2.000 ft/sec)
Blade Tip Thickness - 0.79 mm (0.031 inches) minimum

e Computer Compatible Signal Input/Output Format
® Input to Designate Selected Blade for Single Blade Clearance

® Display Blade Clearances in Bar Chart or Similar Form
12
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B. The Advanced Optical Blade Tip Clearance Measurement System environmental per-
formance design goals were as follows:

® Measurement system probe to be capable of operation without degradation in a
typical gas turbine environment where probe adjacent wall temperatures reach
1311 K (1900°F).

® Measurement system probe to be capable of operation without degradation in a
typical gas turbine environment where gas path operating pressures reach 30
atmospheres.

e Measurement system probe to be capable of operation without degradation in a
typical gas turbine environment where vibration levels encountered are as high as
12.7 mm/sec in the 50 Hz to 2500 Hz frequency range.

Environmental performance design goals were applied only to the probe since the other
components are not subjected to the severe gas turbine environment.

iil. SYSTEM DESIGN CONCEPT SUMMARY

The Advanced Optical Blade Tip Clearance Measurement System basically consists of an
Optical Subsystem. an Electronic Subsystem, and a Tektronix Model 4051 Computing and
Graphic Display Terminal. Figure 5 illustrates the system configuration.

A rangefinder triangulation principle is used to detect blade tip clearance by means of an optical
probe assembly attached to the operating engine gas path seal. The optical probe is designed to
meet the environmental performance requirements. A helium-neon laser beam is directed
through lenses and fiber optic coupling to the probe where it is focused onto the blade tip. The
blade tip reflects the focused laser spot back through the probe, a coherent fiber optic coupling,
and lenses to the gated Image Intensifier.

The Image Intensifier amplifies the low intensity reflected laser spot and transfers it onto the
Linear Photodiode Array (LPA). The spot’s linear position on the array, which represents the
blade tip clearance, is converted to a video signal.

The blade passing pulse train. detected by sensing a portion of the reflected laser spot ahead of
the Image Intensifier. provides blade counting and synchronization information.

A Tektronix Model 4051 Computing and Graphic Display Terminal is utilized for system control
and clearance data presentation. The Electronic Subsystem interfaces the 4051 and the Optical
Subsystem.

Test variables (e.g.. AVERAGE or SINGLE BLADE measurement modes, number of rotor
blades, clearance limits) are entered into the 4051 by the system operator via the 4051’s kevboard.
The 4051 then activates the proper software programs and instructs the Electronic Subsystem to
set the hardware in accordance with the preprogrammed test variable requirements. Com-
munication between the 4051 and the electronic hardware is accomplished via a General Purpose
Interface Bus (GPIB).

Manually operated controls are provided on the Electronic Subsystem front panel for remote
adjustment of optical filters and lenses to optimize the LPA video output at steady state engine
test conditions. An image intensifier automatic gain control compensates for limited intensity
variations.

13
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During tests, the Electronic Subsystem processes the LPA output and identifies the diode site
corresponding to the blade tip clearance by picking the video signal peak. This clearance
information is presented to the 4051 in thousandths of an inch (mils) for plot presentation.

In the AVERAGE Mode the Image Intensifier is gated on continuously to yield an optical average
of all blades on the rotor.

In the SINGLE BLADE Mode the Image Intensifier is gated on to view only the blade requested
bv the 4051. A NASA provided index pulse and the blade passing pulse train are used to
svnchronize the gating process. A NASA provided synthesized blade passing pulse train may also
be used.

Programs in the 4051 are used to format the clearance data for presentation on the graphic
terminal screen. AVERAGE Mode data are presented in a plot of “Clearance versus Scan” (a
time history of average clearance). SINGLE BLADE Mode-1 data are presented in a plot of
“Clearance versus Blade Number,” and SINGLE BLADE Mode-2 data are presented in a plot of

“Clearance versus Scan” (a time history of a selected single blade clearance).

IV. OPTICAL SUBSYSTEM DESIGN

The Optical Subsystem of the Advanced Optical Blade Tip Clearance Measurement System is
described in this section with respect to design requirement, component function, and optical
performance. Reference should be made to Figure 6, Remote System Chassis Layout, where
applicable.

The Optical Subsystem includes the probe assembly that is attached directly to the operating
engine gas path seal. This probe is coupled to a laser and detector in the remote system by means
of flexible fiber optic bundles. In operation, input to the probe is generated by a helium-neon laser
whose output intensity is first regulated by a neutral density filter wheel and then focused to a
small spot by a microscope objective lens onto the tip of the probe input fiber optic bundle. This
flexible fiber optic bundle transmits the spot image energy to the engine mounted probe head
assembly.

The input laser spot image is transferred by the probe optics onto the tip of the target engine
blade. By utilizing the rangefinder triangulation principle, the blade tip gap is determined by the
reflected image of the input spot through the probe to the tip of the probe output fiber optic
bundle. This information is relayed through this fiber optic bundle to its output head which is
carefully positioned by the X-Y translation stage at the prime focus of a relay lens assembly.

The relay lens assembly objective lens receives 70% of the output spot radiation, collimates it,
and filters the laser signal at 6328A +10A to the Image Intensifier lens which in turn forms the
image of the spot position on the Image Intensifier face plate. The gated Image Intensifier
amplifies and transmits the spot signal to a LPA which forms the output video signal.

The relay lens assembly concave mirror receives approximately 15 of the probe output spot
energy which is transferred to a photomultiplier tube by way of a fiber optic light guide. This
photomultiplier tube then generates an electronic pulse train which is used for blade passing
detection and counting.
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Figure 6. Remote System Chassis Layout
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Description_
Laser, Hughes Model 3235 H-C, 10 mW He-Ne
Neutral Density Filter Wheel/Drive Assembly
Objective Lens Translator Assembly
Probe Output Head
X-Y Positioning Mount
Blade Passing Detector Head
Blade Passing Fiber Optic Light Guide
Blade Passing Photomultiplier Tube Housing
Blade Passing Photomultiplier Tube Power Supply
Blade Passing Detector Concave Annular Mirror
Relay Lens/Image Intensifier Lens Housing
Image Intensifier Tube and Adapter
Photodiode Array Circuit Board Mounting Bracket
Photodiode Array Circuit Board
Image Intensifier Tube Power Supply
Circuit Board Rack
Laser Power Supply, Hughes Model 3535H
Power Supply
Power Supply
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The probe head assembly design and its associated input/output schemes were based on proven
concepts used successfully in current probe systems at Pratt & Whitney Aircraft. However, the
Image Intensifier/LLPA device utilizes technology which has unproven reliability and performance
in this application. Since the Image Intensifier device is the most critical component of the
svstem, great care was exercised in its selection. Because specifications for pulsed (gated)
operation of the selected device were not available from the vendor, a careful analysis was
performed based on the device’s operational principles. It was concluded that the risks inherent
in the device were acceptable for the development of this Advanced Optical Blade Tip Clearance
Measurement System with a reasonable confidence level for successful application.

Helium-Neon Laser Source

The helium-neon laser radiation source (6328A) is a Hughes Model 3035H 10 mW Laser Svstem.
The Laser System includes a Model 3235H-C 10 mW Laser Head and a Model 3535H Power
Supplv.

The Laser Head has the following primary characteristics:

Minimum Output Power (TEM.,.., CW) = 10 mW @ 63284
Beam Diameter ¢ 1/e? = 1.37 mm

Beam Divergence = 0.6 mrad

Polarization = Random.

The laser tube is enclosed in a rectangular housing which is mounted securely to the Remote
System Chassis.

The laser tube is provided with an on-off mechanical beam shutter near the beam exit, which is
useful during laboratory setup and calibration.

The selection of the Hughes Model 3035H 10 mW Laser System was primarily a result of
demonstrated reliability of the Hughes product line. However, power/cost trade-offs and inherent
vendor product integrity were also emploved in the selection. From these considerations. the
Hughes svstem surfaced as the most attractive choice.

Neutral-Density Filter Wheel

The neutral-density filter wheel is used to control the laser radiation intensity at the blade tip.
This control adjusts for the variation in the optical properties of different engine blade tvpes. and
the variation in energy received by the Image Intensifier at different engine speeds and system
operating modes. The primary purpose of the filter wheel is to set the incident beam intensity at
a preselected and established value to provide the intensity needed for the SINGLE BLADE
Mode and AVERAGE BLADE Mode for the blade tvpe being investigated. To accomplish this
task. the drive motor is automatically indexed to the appropriate filter wheel location when the
svstem mode is selected. The attenuation can be further controlled manually by stepping the
filter around its nominal position. The wheel position is monitored by observing the filter wheel
position meter on the Electronic Subsystem front panel. where 0 is minimum attenuation and 100
is maximum attenuation.

To prevent damage to the Image Intensifier, the filter wheel can also be positioned at maximum
attenuation to block out the laser beam at low engine speed. This feature is in addition to the
automatic LOW RPM protection for rotor speeds below 600 RPM.

The filter wheel is also used during setup and calibration of the probe system to prevent damage
to the Image Intensifier.

17
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To protect the ﬁlte; wheel from damage and contamination, it is contained in a housing with
entrance and exit holes for the laser beam. The housing is hard coupled to both the Remote
System Chassis and the laser housing. The drive motor is hard coupled to the filter wheel housing.

Objective Lens Translator Assembly

The objective lens translator assembly couples the laser beam to the probe input fiber optic
bundle. The assembly consists of a 20-power microscope objective lens to focus the laser beam to
a spot of approximately 12 ym diameter on the end of the fiber optic bundle.

The objective lens translator assembly is mounted in a housing which consists of four parts: The
objective lens translator assembly mount, coupling disc, alignment disc. and positioning disc.
The coupling disc mates directly to the objective lens translator assembly. It has a close sliding
fit with the alignment disc. This arrangement allows accurate location of the alignment disc
within the coupling disc without any perceptible play. The positioning disc is actually the tip of
the laser input fiber optic bundle. It attaches to the alignment disc and is used to locate the
focused laser spot at an optimum area of the coherent fiber array for peak transfer of the laser
energy through the fibers. Once aligned, the assembly can be separated at the alignment and
coupling discs and then reattached without loss of spot position location on the fiber optic bundle
face.

The objective lens translator assembly is hard coupled to both the filter wheel housing and the
translator housing. The translator housing is hard coupled to the Remote System Chassis.

Laser Input Fiber Optic Bundie

The fiber optic bundle which transfers the focused laser spot‘ to the blade tip clearance probe head
is a 1.27 mm X 1.27 mm array of coherent multifibers with 10 ym fiber elements. The length of
the bundle is 2.74 meters.

By utilizing a coherent array of 10 um fiber elements, efficient transfer of the focused laser spot
energy through the fiber bundle is realized. Since the fiber elements are arranged in a coherent.
close packed structure, the spot movement will only shift the spot energyv from the initial target
fiber area to an adjacent fiber area. '

The bundle is sheathed in a flexible, braided stainless steel conduit which is sealed against oil and

moisture. This significantly ruggedizes and protects the bundle from rough handling in the test
cell environment.

Probe Head Assembly

The probe head assembly transfers and focuses the input laser spot image to the target blade tip.
It then views the radial movement of the blade tip by utilizing the rangefinder triangulation
principle, and reimages the spot’s position onto the output fiber optic ribhon. The probe head
assembly consists of two primary components:

® The probe body, which houses the viewing prism and mates directly to the gas
path seal.

® The interface housing, which contains the objective lens and the mating

connections for the input and output fiber optics, as well as for the drv
nitrogen purge line.

18
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The probe body is designed to bayonet fit directly to the gas path seal whose clearance with the
rotating blade tips is to be measured. This direct coupling concept is fundamental to the
successful application of the laser blade tip clearance device since the probe tip must move with
the gas path seal to provide a stable and meaningful frame of reference. In addition, the distance
from the bayonet mount to the gas path seal should be as short as possible to reduce the errors
induced by thermal growth. To this end. the bavonet mount is located at the tip of the probe
body.

The entire probe head assembly must be capable of free radial movement to account for
differential case growth and also provide a seal with the case structure to prevent case cooling air
and/or main stream gas flow leakage. This task is accomplished with a piston ring tvpe seal.

Once fitted to the gas path seal. the probe is prevented from rotating by means of a rotation lock
kev. The key is bolted into place against the flat machined from the rotation lock flange on the
probe body. This key. while preventing rotation and subsequent loosening of the bavonet fit, does
not constrain movement of the probe along its axis resulting from thermal growth of the
engine/probe system.

Probe cooling is accomplished with a dry nitrogen purge at a flow rate of 10 grams per second. The
gaseous nitrogen enters the probe through a #4 Aeroquip fitting welded to the side of the interface
housing. The gas flows between the inner wall of the probe body and the interface housing
extension which accepts the objective lens. It enters the lower portion of the probe body in front
of the objective lens through holes in the lens mount and finally exits through the prism viewing
slot after flowing around the prism itself. The chamber containing the fiber optic input/output
tips and the rear lens surface is not purged since it is a sealed chamber. The chamber is cooled
by the flow of gaseous nitrogen around the extension which holds the objective lens.

The optical components contained within the probe assembly consist of the objective lens and the
sapphire viewing prism. The viewing prism is seated at the bottom of the probe tip. It is spaced
awayv from the viewing slot by a .5 mm counterbore which allows the nitrogen purge flow to pass
across the prism face and exit through the slot; thereby keeping the prism face clean. The prism
is retained against the counterbore lip by a thin wall sleeve. The prism and sleeve are kept from
rotating by an anti-rotation pin through an axial slot in the upper sleeve wall.

The objective lens is contained within the lens mount which has a close sliding fit with the tip of
the interface housing extension. When assembled, the lens mount is spring loaded into place by
a spring spacer between it and the prism retainer. This arrangement allows the interface housing
chamber to be sealed and still allows the lens to be removed for cleaning or replacement.

The objective lens aperture is divided in half by a light baffle within the interface housing
extension. One half of the lens is used for focusing the laser input radiation onto the blade tip.
while the other half is utilized for refocusing the laser spot on the output fiber optic ribbon. This
technique has the advantage of eliminating backscatter of input laser radiation from the lens
surface and chamber walls, thereby greatly improving the signal-to-noise ratio. It, however, also
has the disadvantage of reducing the effective collecting aperture of the objective lens. In trading
off these considerations, it was realized that the greatly enhanced S/N ratio at the output ribbon
more than compensated for the apparent decrease of intensity.

The signal-to-noise ratio of the probe is further enhanced by sand blasting and blackening the
interior wall surfaces of the probe. This is particularly important for the prism retainer walls
which are roughened and blackened to improve absorption of reflections from the prism faces and
other stray radiation sources.
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The fiber optic input and output tips are coupled to the rear of the interface housing. Thev are
bolted into place after being focused by the use of focus positioning shims. Once the input and
output bundles have been precisely spaced, they can be removed and replaced without affecting
probe alignment or calibration.

A summary of the probe optical design parameters derived for this system is given in Table 1.
The optical system parameters satisfy two primary constraints:
® The prism width, W, as determined by the probe tip envelope, and

® The probe range, R, as determined by the prism to probe tip spacing (R,) and
the maximum probe tip to blade tip clearance to be measured (R,).

The system variables are:

The prism height, L

The prism angle, «

The input bundle incident angle, 6,, and
The objective lens focal length, f.

The basic probe optical system is shown in Figure 7 with the detail and symbol definition of the
prism ray geometry shown in Figure 8. All symbols and relationships involved in the calculation
equations can be defined by reference to these two figures.

The calculation of the probe optical design parameters has been accomplished by a series of
iteration processes consisting of three groups of calculations:

¢ determination of the input angle, §,, with the resulting definition of prism
configuration (L. and «)

® determination of the objective lens focal length, f, and resulting spacing of the
input and output bundles and prism with respect to the objective lens / (in)
and { (focus)

® determination of the angular location of the output bundle with respect to the

probe axis, 6, (focus), and the spot travel range on the face of the output
bundle, D.

The boundary conditions which determine the interaction of the laser radiation with the sapphire
viewing prism are given as:

n sin u = n’ sin u' (Snell’s Law), (H
Where u is the angle with respect to the boundary normal in the medium with an index of

refraction n, and u’ is the angle with respect to the boundary normal in the medium with the
higher index of refraction n’".

n = 1.000 (air @ 6328A) (2)
n = 1766 (sapphire @ 6328A) (3)
tan ¢, = Y/L (ER to strike apex), (4)
and tan ¢, =

YR (defines probe range). (5)
: 20



Table 1. Probe Optical Design Parameters Summary

Laser Input Angle, 6,

Output Angle, 6, (out)

Total Probe Range, R

Effective Probe Range, Ry

Objective Lens Focal Length, {

Laser Input to Lens Spacing, 0 =t (in)

Lens to Output Ribbon Spacing, OF =1t (focus)
Lens to Prism Spacing, oP = Lages

Output Spot Range, D

7.0°

5.1°

190" {4.83 mm)

120" (3.05 mm)

25.4 mm (1.007)

49.7 mm (1.967)

48.0mm (1.897)

35.0 mm (1.387)

3.17 mm (.1257)

Prism Height. L 9.76 mm (.384")
Effective Prism Aperture, W 10.16 mm {.400)
Prism Thickness, t 5.08 mm (.2007)
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Objective Lens
(Focal Length = f)

f1 = O_C

(o = CE

f3 = EF

f(in) = O
f'(focus) = OF
Lapex = OP

Sapphire Viewing Prism

Figure 7. Basic Probe Optical System
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Figure 8. Prism Ray Geometry
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Referring to Figure 8 for symbol definition. we find the following relationships result from

application of the above boundary conditions:

Rtan ¢,

L = tan o, (prism height),
¢ = atb
D2 i sin ¢, )
¢\ sin ( — /-
¢,2 = a— ¢‘1!

. _— l: sin(a+0,):l
or ¢; = a — sin —_—
n
and ¢; = sin~! (n’ sin ¢',).
From Figure 8 it can also be seen that

X = h tan ¢,

and

From which

X = L tan ¢'; — Y tan a tan ¢,
1 + tan a tan ¢, '
Recalling equation (4),
Y = L tan ¢,

SO

_ L (tan ¢, — tan a tan? ¢’,)

X
1 + tan o tan ¢,

(6)

(7)

(8)

(9)

(10

an

(13)

(14)

(15)

(16)

The iteration procedure to establish the laser input angle, §,, the prism height, L, and the prism

angle, a, is as follows:

Step 1: Select 6, candidate values (fiber optic bundle input angle)

Step 2: Select R (total probe range)
Step 3: Select o (prism angle)

Step 4: Select W (probe envelope diameter)
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Step 5: Find ¢, from equation (10)

Step 6: Find ¢, from equation (11)
Step T: Find L (prism height) from equation (6)
Step 8 Find Y from equation (15)

Step 9:  Find X from equation (16)

Step 10: Calculate X + Y and check to see if

Q<X +Y) <o (17)
where W is the probe envelope diameter and Q is minimum acceptable radial distance
from the probe axis to the point where the input ray first strikes the prism. The value

of Q is arbitrarily selected to fit the design application. For this case, Q was selected to
be W/10.

— If condition (17) is true, then #,, a and L are established by their current
values.

— IfQ = (X +Y), then the input beam strikes the prism too close to the
probe axis. For this application, the value of the prism angle, a, is held
constant at 45° and 6, is increased by 0.1°. Return to Step 5 and continue.

—  If(X +Y) >W/2, then, with a held constant at 45°, 6, is decreased by 0.1°
and the procedure continued at Step 5.

With the prism configuration and the input angle defined, the objective lens characteristics and
positioning requirements are now to be found.

From Figure 7 it is seen

‘ X +Y
hS N 6, (18)
and
_ X
Rt (19)

which must be corrected for effective optical path length in the prism, that is, the equivalent air
thickness, to yield
. .

? = 1l (20)

The distance |, is the distance from the point the input laser radiation exits the viewing prism
to the laser nominal focus point. This point will be located at the distance Z from the prism base
along the probe axis. Since a well defined spot size is most important at some distance near zero
clearance, R,, the nominal focus will be set at

Z =R, + 4, (21)
25



FR-10200A

where A is an offset to some clearance value greater than zero selected by the application
requirements to provide increased accuracy near the rub condition where measurements are most
critical. Therefore:

_ Z
?, - oS ¢z . (22)

Substituting from equation (11)

= cos [sin“(zn’ sin ¢)]° (23)
The total optical path length is given by

o=t + 1%+, (24)
The thin lens equation now gives

tim) = (- %) B (25)

as the lens to input fiber optic bundle distance for a lens of focal length f.

By utilizing the above information, the distance from the objective lens to the prism apex along
the system centerline can be found:

L, = ¢, cos 6, (26)
L, =1, cos ¢, (27)
Lapes = L, + L, - L (system invariant) (28)

We have now established the distance from the objective lens of focal length f to the prism apex,
Liapes, and the resulting distances from the input fiber optic bundle to the lens, /(in}, and the lens
to the focused laser input spot, {,. However, in recalling from condition (17) that the condition
X + Y < W/2 can be satisfied for a family of input angles, §,, we will wish to utilize an input

angle, 4,, which gives a close to unity magnification, M, of the laser spot size at the nominal focus.
That is,

M = (’p .
“dm 1 (29)

The candidate ¢, values should be selected on this basis to preserve spot definition and position.

The positions of the output spot images on the fiber optic ribbon for the effective range, R, of the
probe must now be found. Since at maximum range the light path is symmetric to the probe axis,
the maximum spot position on the ribbon will be at

8, (max) = 6, (30)
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relative to the objective lens axis. The ray for minimum clearance 6,(min), must, however, be
traced through the system. The location of the output fiber optic bundle will be determined by
the ray through the nominal focal point given by equation (21), 8, (focus). The output rays are all
constrained by the requirement that they must pass through the center of the objective lens
defined by equation (25). This condition is met with due consideration of the value for L., given
by equation (28), which is an invariant for both input and output rays.

By again referencing Figure 7 and Figure 8, it is seen that for the generalized return ray to pass
through the center of the lens,

PA’ = Lapes tan 6, (31)
also
PB = PA’ cos 6, (32)
= _ PB’
PC = cos (a + 6;)'
and

X —(—Y)=(X+Y)=PC cosa = DC".

In combining these equations it is found that

X'+ Y) = Lupes [ sin by } 4
( ) = Lapex CO8 prver ey o (34)

The refraction at point C' requires

8 = sin" [—S‘—“(%i”- ] (35)
where

B = a + 6,
Also

B = a8,
therefore

B, = sin~! [n" sin (a — B)]. (36)

We can find X' from the following analysis:
PD = (X' + Y)tana (37)

X' = (L — PD) (tan 8) (38)
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or,
X =[L - (X + Y) tan a] tan (« — ), (39)
and
Y =X +Y)-X. (40)

The distance Z from the prism face to the point on the input laser radiation beam whose output
value 8, is being found, can be determined by reference to the following generalized diagram.

It is seen that

tan 8, = % , (41)

and

tan ¢, = (_Y%)__A_ (42)

(Y’ may be negative)
By eliminating A from these equations, it is found that

_ Y+Y
Z = tan ¢, + tan 8, °’ (43)

where Y and ¢, are the values derived from the laser input as given by equations (15) and (11),
respectively. The values for Y’ and @, are those from equations (40) and (36), respectively. The
value for Z determined by equation (43) is to be compared to the actual value of Z for the point
whose value of 6, is being found.

Therefore, the procedure for establishing 8, for an output point Z can be summarized in the
following steps:

Step 1: Calculate L,,., from equation (28).

Step 2: Select an initial value for 6, to be 0<8,<#, for the given point at Z.

28



FR-10200A

Step 3: Calculate (X' + Y') from equation (34).

Step 4: Calculate 8; from equation (35).

Step 5: Calculate X' from equation (39).

Step 6: Calculate Y’ from equation (40).

Step 7: Calculate g8, from equation (36).

Step 8: Find Z from equation (43).

Step 9: Compare value of Z from Step 8 to value of Z required for establishing 6,. If these

values are equal within, say, £0.025 mm, then the value for §, has been established.
If the values of Z are unequal, then go back to Step 2 after scaling a new value for
8, by

Z,—2Z X
02 = 0,\ +[ -—A___ (08—0A)] for 03 > 0,\ (44)
Z,-Zy

The above procedure should be followed to establish @, (min) and 6, (focus) for Z = R, and
Z = R, + A, respectively. With these two quantities, the distance from the focus point to the
objective lens§; and the distance from the objective lens to the output fiber optic ribbon{’ (focus)
are calculated. The calculations are accomplished by using the corresponding relationships
defined by equations (18) through (25), with calculations based on equations (26), (27), and (28)
serving as a validity check through the invariant L,.,.

The angle of the output fiber optic ribbon with respect to the lens axis is now found from

8,(out) =[ f:(max) ; 0,(m1n)} + 8,(min) (45)

The value for ?(out), the distance of the output fiber optic ribbon from the objective on
the 6,(out) angle line, is used as the proper position for the output image plane and is found from

FG' = ¢(focus) sin [82(out) —6,(focus)] (46)
, FG
¢ =
(out) tan [6;(out) — 8,(focus)] )
The spot range is next found from
G'J' = i'(out) tan [,(out) — 6;(min)] (48)
D=2GJ (49)

Final trade-off for selecting the appropriate candidate 4, is based upon the spot range being at or
near unit magnification of the true blade tip measurement range. That is

D~R, (50)

One additional consideration must now be made. We recall the calculated values for ¢, = 8,(max)
and 8,(min) from equations (11) and (36), respectively. In the Optical Properties of Blade Tips
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Study, it was shown that, for the most part and considering realistic variations, the detected
signal strength of the scattered radiation from the blade tip does not fall off significantly in the
region +5° around the nominal angle of reflection. The operation of the probe is, therefore, not
appreciably affected if

| ¢ — Bi(min) | < 5° v (51)
This constraint must be considered before final optical design data are accepted.

A summary of results based on the preceding discussion for this Advanced Optical Blade Tip
Clearance Measurement System appears in Table 2 and in Table 3. Three values of the total
probe range, R, were selected. The probe range variations reflect mechanical design changes in
the prism face to probe tip distance, while the measurement range of the probe is maintained at
0.120". The prism angle, a, and the maximum inside diameter of the probe envelope, W, were
kept constant at 45° and 10.16 mm, respectively. Also established as a constant for the system
was the objective lens focal length, f, which was set at 25.4 mm.

After proceeding with the calculations developed from equations (1) through (28). the first trade-
off decision was centered around equation (29) which states that the laser spot magnification at
its nominal focal point should be approximately unity. In studying Table 2 it is seen that the two
input angles, 6.5° and 7.0°, with total ranges of 0.170" and 0.190", respectively. have values of M
close to unity. These, therefore, became our candidate values and the parameters generated from
them were utilized for subsequent calculations and analysis.

We then continued the procedures outlined by equations (30) through (49) and arrived at the next
trade-off consideration dictated by equation (50) for the spot range to be approximately equal to
the real measurement range of blade tip clearance. It is seen from the data in Table 3 that a 7.0°
laser input angle with a total range of 0.190" provided the best approach to D ~ R,,.

The final consideration assured that, for minimum clearance, the angle of incidence of the laser
radiation on the blade tip was equal to the nominal angle of reflection to within +5°. As can be
seen the parameters selected meet this condition.

It should be noted here that the focus offset, A, was selected to be 0.508 mm. This choice was
based on the assumption that the most critical blade tip clearance region would occur within
twice this value, an assumption which has been validated by past experience with typical engine
clearances.

Probe Output Fiber Optic Bundie

The fiber optic bundle linking the probe output image plane with the input image plane of the
Image Intensifier relay lens assembly is a 1.27 mm by 5.08 mm coherent array of 10 ym fiber
elements. The length of the bundle is approximately 2.75 meters.

The bundle is sheathed in a flexible, braided stainless steel conduit which is sealed against oil and
moisture. This significantly ruggedizes and protects the bundle from rough handling in the test
cell environment.

X-Y Posltioning Mount

The X-Y positioning mount provides a mounting base for the probe output head and the biade
passing detector head while allowing accurate focus positioning with respect to the relay lens
assembly. The translation stage is hard coupled to the Remote System Chassis. Once the probe
output and blade passing detector heads have been positioned, the translation slides are secured

by set screws.
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Table 3. Final Probe Design Trade-off Study Parameters

R = .170" (4318 mm) R = .190" (4.826 mm)
6s(max) 8y(focus)  6,(min) 6,(max) 6,(focus) 6,(min)
0, 6.500° 6.500 6.500 7.000 7.000 7.000
Lapes 34 457 mm  34.457 34.457 §34.955 34955 34.955
8, 6.500° 3.216 2.483 7.000 3.907 3.221
X+Y 4.431 mm 2.051 1.562 4.893 2.562 2.084
B 26.305° 24.976 24.669 § 26.501 25.262 24 978
X 1.466 mm 2.446 2.668 | 1.628 2.582 2.796
Y 2.965 mm —0.3%4 -1.106 3.265 -0.020 -0.712
G, 34.475° 37.208 37.850 §34.079 36.614 37.204
Z 4.318 mm 1.778 1.270 4.826 2.286 1.778
v 2.618 mm  51.407 51.224 155.037 53950 53.744
#'(focus) — 50.207 mm — — 47.997 —
#:(out) — 4.492° — — 5.111 —
D — 3.521 mm — — 3.167 —
R, — 3.048 mm — — 3.048 —
| s —B, (min) { - 3.3756° — — 3.125° —

Relay Lens Assembly
The relay lens assembly serves three primary functions:

e To receive and collimate the laser spot image radiation received from the
probe output fiber optic bundle.

@ To isolate the 6328A radiation from unwanted background radiation.

® To collect peripheral radiation from the probe output head which is not
collected by the objective lens and utilize that energy to produce a hlade
passing pulse train.

The above functions are accomplished by the optical elements contained in a single assembly
that is coupled directly to the Image Intensifier lens.

Blade Passing Detection System

The requirement to generate a blade passing pulse train is achieved through utilization of a
concave annular mirror. The objective lens of the relay lens assembly views the probe output spot
image through a hole in the center of the concave mirror equal to the objective lens diameter.
Therefore. the objective lens receives approximately 70¢. of the fiber optic hundle output
intensity distribution while the annular mirror segment will receive the peripheral radiation from
the bundle which would otherwise be lost. The radiation collected by the mirror is focused onto
the tip of a fiber optic light guide positioned beside the probe output head. The light guide is of
sufficient diameter for the spot to always be detected throughout the probe spot range. Once the
radiation is detected by the light guide tip, it is transmitted to a photomultiplier tube (PMT)
where the pulse train signal is generated. Laboratory measurements demonstrated that this
scheme receives 15 to 2077 of the total energy available from the probe output tip. This, together
with the radiation received by the objective lens, showed this scheme to utilize about 85: of the
total radiation emitted by the probe output tip.

The photomultiplier housing contains the PMT. The PMT output is conditioned and processed
by the Electronic Subsystem.
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image Intensifier Lens

The collimated and filtered signal radiation from the relay lens assembly is reimaged onto the
Image Intensifier faceplate by a motorized iris f/1.3 lens. The lens is hard coupled to both the
relay lens assembly and the Image Intensifier device.

The lens contains a motorized iris to maintain a minimum spot image size on the Image
Intensifier faceplate and ultimately the Reticon diode array.

During conditions of sufficient signal radiation the iris is set at the position to obhtain minimum
spot size as determined by the Reticon video output. If the primary system throughput controls
(laser filter wheel and Image Intensifier gain control) require augmentation, the iris can be
opened or closed to provide the necessary signal level.

image Intensifier/LPA

The Image Intensifier device used in this system is a “Second Generation” Proximity Focused
Microchannel Plate Image Intensifier optically coupled to a Reticon RL 256C/17 LPA (256
elements with one mil center to center diode spacing). The Image Intensifier uses a gateable,
remotely programmable power supply.

The entire image intensification process is performed internally with no external electronics other
than the gateable power supply. The tube consists of an input window with an S20 photocathode
deposited on the inside surface, a microchannel plate, and an output phosphor screen coupled
directly to a Reticon photodiode array by way of a fiber optic faceplate. The tube envelope is 40
mm in diameter and 30 mm long.

The Image Intensifier tube operation is described by the following discussion: The optical signal
energy enters the input window where it strikes the photocathode. At the photocathode,
photoelectrons are produced and subsequently accelerated toward the microchannel plate by an
electric field potential. At the microchannel plate, secondary electrons are produced and
multiplied through each microchannel element by the applied potential across the plate. This is
the primary gain mechanism of the device. The multiplied secondary electrons exiting each
microchannel element are again accelerated by an applied potential and strike the phosphor
screen where the electron energy is converted back to photon energy. This conversion process
results in additional gain as a function of the applied voltage between the microchannel plate and
the phosphor. These photons generated by the phosphor are then guided by the output fiber optic
faceplate to the LPA. The signal spot size is preserved throughout the amplification process by
the proximity focusing technique of the tube. That is, the photon/electron/photon flow through
the device remains collimated due to the close proximity of each surface and the strength of the
accelerating potential between the surfaces.

The output of the device is, however, limited by a saturation effect within the microchannel
plate. This limit is defined by ITT in terms of a maximum allowable input flux density
(lumen/cm?) for a continuous (steady state) signal source. To determine tube/detector
compatibility for this measurement system application, a comparison of the pulsed input
conditions to the specified continuous input limitations was needed.

The estimated total spot energy seen by the Image Intensifier per 1.3 microsecond duration pulse
(worst case blade passing duty cycle) is approximately 1.3 X 10 joules. This quantity of energy
is quite low and corresponds to only 4.20 X 10** photons per pulse. Since the ITT specifications
can be given only with respect to continuous photometric radiation flux input, the above pulse
quantity must be converted into an equivalent continuous radiation input level for comparison.
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When this is done, in photometric units, the flux density of the pulse spot corresponds to an
equivalent continuous input level of 1.4 X 10-* lumen/cm?. Thus, it is clearly seen that our
equivalent continuous input level exceeds the ITT specification by a factor of 2600, even though
it is equally clear that the input per pulse is quite low. This dilemma is deepened by the fact that
the Image Intensifier device’s specified luminous gain is sufficient to amplify this low level pulse
to a detectable signal at the Reticon array.

The compatibility question was resolved by careful and detailed analysis of the operational
principles of the microchannel plate device, and consideration of published reports from
investigators who have experience with gated and/or pulsed operation.

Based on this analysis, it was concluded that operation of the ITT device in the pulsed and/or
gated mode would produce, with a reasonable confidence level, a detectable signal at the Reticon
diode array. The above analysis indicated that the technical risks inherent in utilizing the ITT
device were acceptable and the probability for success of the system was favorable.

V. ELECTRONIC SUBSYSTEM DESIGN

The Electronic Subsystem controls the components of the Optical Subsystem and processes the
data from the Linear Photodiode Array (LPA). It also interfaces to the Tektronix 4051 computer
to receive commands and transmit tip clearance data.

The system operating mode is determined by the operator through keyvboard commands to the
system software resident in the 4051. The system software transforms the operator’s requests into
the appropriate command sequences for transmission to the Electronic Subsystem. The
command sequences are made up of variables {e.g.. SINGLE BLADE Mode. BLADE NUMBER)
which, when received by the Electronic Subsystem, cause the desired operating mode to be
selected. The LPA scan control logic executes the command by controlling the Optical Subsvstem
in the desired mode. The 4051 software then asks for tip clearance data with another command
sequence. In addition to the tip clearance data, an error line has been provided to signal the 4051
if the data are invalid, due to a detected hardware error condition.

The Optical Subsystem control circuits operate in one of two basic modes. AVERAGE or
SINGLE BLADE. In the AVERAGE Mode, the Image Intensifier is gated on continuously and
the LPA optically averages the clearance of all blades. In the SINGLE BLADE Maode. the Image
Intensifier is gated on to view only the requested blade. In the SINGLE BLADE Mode, more than
one revolution of the requested blade may be optically averaged by the LPA to provide a-higher
signal level.

To optimize the LPA output, the video signal is automatically increased or decreased by
controlling the gain of the Image Intensifier with an automatic gain control (AGC). A coarse laser
light level control is manually adjusted via a servo operated variable neutral density filter. The
LPA video output is converted to a digital (diode site) clearance number for transmission to the
4051 and display on the front panel.

Software Commands Supported by Electronic Subsystem

AVERAGE/SINGLE BLADE Mode selection determines whether the optics will average all the
blades each revolution or look at one blade at a time.

NUMBER OF REVOLUTIONS, in the range of 1 to 255, determines how many rotor revolutions
will be optically averaged and processed (SINGLE BLADE Mode only).

MINIMUM CLEARANCE ALARM is activated by the 4051 when the software has detected a
measured clearance at or less than a preselected minimum.
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MAXIMUM CLEARANCE ALARM is activated by the 4051 when the software has detected a

measured clearance at or greater than a preselected maximum.

BLADE NUMBER., in the range of 1 to 120, determines the specific blade(s) to be processed
(SINGLE BLADE Mode only).

Hardware Operating Modes

AVERAGE Mode turns on the Image Intensifier gate continuously and the LPA is scanned every
revolution. An updated clearance number is available to be presented to the Tektronix 4051
Graphics Terminal each revolution. The maximum rate at which the 4051 can input data is one
bvte every 1.48 milliseconds. This corresponds to a rotor speed of slightly greater than 40,000
RPM. For higher rotor speeds. the 4051 will accept data every other revolution.

SINGLE BLADE Mode gates the Image Intensifier on to view only the requested blade. The LPA
is scanned every “N” revolutions of the rotor to provide an optical average of a single blade for
“N" revolutions (1< N < 255). After each scan of the LPA an updated clearance number is
presented to the 4051. SINGLE BLADE data can be presented as clearance of any preselected
blade versus scan (a time history) or clearance versus blade number.

Circuit Descriptions

The General Purpose Interface Bus (GPIB) is a communication system which uses a bvte-serial,
bit-paralle] means to transfer digital data among a group of instruments and other system
components. Up to 15 devices may be interconnected by one continuous bus not exceeding 20
meters in length. The signal lines and their timing and control conventions are defined in the
GPIB specifications, reference IEEE STD 488-1975.

There are only three types of devices connected to the GPIB; talkers, listeners, and controllers.
The 4051 is the only controller in this system. It assigns other devices as listeners and talkers.

A listener is a device which receives commands or data from a talker in a predefined format. The
Electronic Subsystem has two listen addresses. One has been assigned to receive 4 BYTES in
sequence: NUMBER OF REVOLUTIONS, AVERAGE Mode/SINGLE BLADE Mode, MIN-
IMUM CLEARANCE ALARM, and MAXIMUM CLEARANCE ALARM. The other has been
assigned to receive a single byte, BLADE NUMBER.

A talker is a device which sends data to a listener via the GPIB. An address has been assigned to
activate the Electronic Subsystem talker to send clearance data over the GPIB to the 4051 which
functions as a listener, at that time.

The talkers, listeners and controller communicate by means of the GPIB “handshake.”

GPIB Transceiver Logic

The GPIB receiver logic performs two functions. It terminates all GPIB lines with a resistive
network and inverts from the negative logic on the GPIB to positive logic required in the
Electronic Subsystem. These positive true signals are used by other GPIB interface logic in the
Electronic Subsystem to receive data, decode addresses and perform the required handshake

sequence.

The drivers convert from positive logic in the Electronic Subsystem to negative logic on the GPIB.
The drive signals are the tip clearance number, data errors, and GPIB handshake.
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Address Decoder/Listener Handshake Logic

The listener handshake logic performs the required sequencing to accomplish the transfer of data
through the GPIB to the 4051. The listener handshake logic is enabled during address transfers
and whenever the Electronic Subsystem is in the listen mode.

The listen address decoder detects the occurrence of addresses on the GPIB as listed below. These
addresses are assigned to the Electronic Subsystem to allow communication with the 4051.

e A LISTEN address which receives the command sequence NUMBER OF
REVOLUTIONS, AVERAGE Mode/SINGLE BLADE Mode. MINIMUM
CLEARANCE ALARM, MAXIMUM CLEARANCE ALARM.

e A LISTEN address which receives only one data byte, BLADE NUMBER.

Since the LPA scanner is running asynchronously with the software, circuitry was provided to
synchronize the talker logic to ensure that the clearance data transmitted correspond to the
current mode of operation. The talker logic performs the required sequencing to transmit the
clearance data to the 4051 in response to the 4051’s command as indicated below.

e A TALK address which causes the interface to sequentially transmit
CLEARANCE DATA bytes to the 4051 while the 4051 reads and stores them.

Index, BPP Conditioning Logic

This logic time shifts the index pulse to coincide with the blade passing pulse (BPP). This insures
that the blade following the index pulse will always be blade number one.

Clock and Cal Logic

The clock provides 500 kHz which is used for scanning the LPA. 200 Hz which is used for
simulation of index pulses, and 400 Hz for simulation of blade passing pulses. These simulation
pulses provide signals representing a 2-bladed rotor at approximately 12.000 RPM during
calibration.

LPA Scan Control Logic

This circuitry uses the BLADE NUMBER, NUMBER OF REVOLUTIONS. and AVERAGE
Mode/SINGLE BLADE Mode flags to initiate the LPA scan and to gate the Image Intensifier. To
provide accumulated light to the LPA a 340 usec delay is provided to take advantage of the
decaying phosphorescence of the Image Intensifier.

In AVERAGE Mode, the Image Intensifier is gated on continuously and the LLPA is scanned once
for each rotor revolution.

In SINGLE BLADE Mode, two options are available:
® The clearance of each blade, in turn, is measured until data from all blades
are obtained. In this option, the Image Intensifier is gated on only during the
passage of the blade being measured.
® The clearance of one blade is measured continuously and the LPA is scanned

once for each revolution.
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LPA Site Counter and Clearance Register Logic

This logic, in conjunction with the peak detector, determines the LPA diode site corresponding
to the first video peak representing minimum clearance of the blade being measured and updates
the clearance register.

Display Logic

The display logic provides clearance data, blade number and number of revolutions to the
numerical display on the Electronic Subsystem front panel. A three digit display has been
provided to display the data selected. Leading zero blanking has been utilized for the first two
digits; i.e., when either of the first two digits is zero, then their indication is blanked. A display
test pushbutton has been provided to allow verification of all segments of the display.

PMT Gate Logic

The PMT gate logic prevents the photomultiplier tube from operating in the calibrate mode and
when rotor speed is below 600 RPM. This is done to protect the photomultiplier tube from
excessive light.

D/A Converter

The digital to analog converter provides clearance data in analog form for general use external to
the system.

Video Gate Control

The video gate control switches the LPA video signal to the peak detector circuitry. Its purpose
is to eliminate data past the first peak which represents minimum clearance.

Filter Position Control

The purpose of this circuit is to generate two manually adjustable, but automatically switched,
setpoints for the neutral density filter wheel positions. Two different setpoints are required for the
two modes of operation, AVERAGE MODE and SINGLE BLADE MODE since the AVERAGE
MODE requires considerably less laser light than does the SINGLE BLADE MODE.

Peak Detector

The peak detector detects the first peak above the preset threshold level in the video output of the
LPA. The threshold level control eliminates low level noise. The peak detector compares each
new LPA diode output with the previous one. When three successive diode sites have iower
outputs than the previous one, the first peak has been identified. Switching transients are ignored
by delay sampling of each LPA diode site. The LPA diode site at which the peak occurs is
translated into a clearance number by means of the LPA diode site counter circuitry. The
amplitude of the first video peak is used to establish AGC voltage to optimize the LPA output.
This MAX/MIN VIDEO detector monitors the amplitude of the first video peak to determine if
the data are valid. If the peak is near the noise level or saturation level an error signal is
generated.
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PEAK DETECTOR CIRCUIT FUNCTIONS

MIN VIDEO Indicated in This Level
|

LPA Saturation_—. — — — 2.6V-

MAX VIDEQO— — — — — 2.05v

AGC Level- — — - — — 1.6V —

MIN VIDEO - — = = - 0.8v-—

Video Threshold — — — 0.6V -
Where

——
Diode Site

Diode Site With Peak
Voltage Is Translated
to Clearance

LPA Saturation (2.6V) is saturation vol.tage of the LPA.

MAX VIDEO (2.05V) is the
signal is generated if the

maximum acceptable LPA peak voltage. An error
peak voltage exceeds this level.

AGC Level (1.6V) is the optimum LPA peak voltage operating level.

MIN VIDEO (0.8V) is the minimum acceptable LPA peak voltage. An error

signal is generated if the

Video Threshold (0.6V) is the
circuit can ‘“lock-on” to.

LPA peak voltage is less than this level.

minimum LPA peak voltage level which the AGC

Front Panel Controls and Indicators (Figure 9)

AVERAGE MODE indicator illuminates when the system is in AVERAGE Mode. in which the

LPA optically averages the clearance

SINGLE BLADE MODE indicator ill
which the LPA optically averages the
of the rotor.

of all blades on the rotor.

uminates when the system is in SINGLE BLADE Mode. in
clearance for the preselected blade for 1 to 255 revolutions

MAX CLEARANCE LIMIT indicator is controlled, through software, by the 4051 and

illuminates when the software has
maximum value.

MIN CLEARANCE LIMIT indicator

detected a clearance at or greater than the preselected

is controlled, through software, by the 4051 and illuminates

when the software has detected a clearance at or less than the preselected minimum value.
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DISPLAY normally indicates the latest clearance data.
BLADE NUMBER switch, when depressed, provides the display an indication of blade number.

NUMBER REVS switch, when depressed, provides the display an indication of number of
revolutions.

LED TEST switch, when depressed, forces the display to indicate 888 which illuminates all
segments for verification of their operation.

HOLD switch, when depressed, prevents further updating of the display register allowing the
operator to read a sample of rapidly varying clearance readings.

OPERATE/CALIBRATE switch selects the sources of the blade passing pulse train and the
index pulse train. In the OPERATE position, the sources of the signals are derived from the rotor
under test. In the CALIBRATE position, an internal oscillator generates these signals, simulating
a two-bladed rotor at approximately 12,000 RPM. This position is used for a static calibration of
the svstem, with the probe attached to a calibration fixture.

IMAGE INTENSIFIER LENS CONTROL is a three-position momentary switch which allows
remote manual operation of the Image Intensifier lens motorized iris. The switch is normally in
the OFF position, but can INCREASE or DECREASE lens aperture when activated.

DATA ERROR lights illuminate and flag the 4051 when an error has occurred.

e MIN VIDEO indicator illuminates when the LPA output is near the noise level or
undetectable.

e MAX VIDEO indicator illuminates when the LPA output is at or near saturation. The Image
Intensifier gain is also set to minimum when this occurs.

e BLADE NUMBER indicator illuminates when the selected blade number is greater than the
number of rotor blades, as determined by the ratio of the blade passing frequency to the index
frequency.

e LOW RPM indicator illuminates when the frequency of the index pulse train drops below 10
Hz (600 RPM).

e VIDEO MALF indicator illuminates when the Optical Subsystem has detected an error
condition; (i.e., MIN VIDEO, MAX VIDEO).

ATTENUATOR POSITION meter indicates the position of the neutral density filter wheel which
is used to attenuate the laser beam from O to 100%.

FILTER POSITION ERROR indicator illuminates when the neutral density filter wheel is not at
the desired position as determined by the setting of the AVERAGE MODE or SINGLE BLADE
MODE filter position controls.

AVERAGE MODE, a 10-turn dial with a range from 0 to 100%, is used to set the desired position
of the neutral density filter wheel when the system is in the AVERAGE Mode.

SINGLE BLADE MODE, a 10-turn dial with a range from 0 to 100, is used to set the desired
position of the neutral density filter wheel when the system is in the SINGLE BLADE mode.
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MIN GAIN indicator illuminates when the Image Intensifier AGC has driven the gain of the
Image Intensifier to the minimum value. This AGC error indicates an adjustment of the neutral
density filter wheel position or Image Intensifier lens motorized iris is required to further
attenuate the optical signal to the LPA.

MAX GAIN indicator illuminates when the AGC has driven the gain of the Image Intensifier to
the maximum value. This AGC error indicates an adjustment of the neutral density filter wheel
position or Image Intensifier lens motorized iris is required to increase the optical signal to the
LLPA.

VI. SYSTEM SOFTWARE

The Tektronix model 4051 Computing and Graphic Display Terminal controls the Electronic
Subsystem and provides clearance data presentation. Specific test conditions are accepted by
programs resident in the 4051’s core memory from operator keyboard entries. Upon execution, the
programs issue control instructions and receive blade tip clearance (in mils) in return via the
GPIB.

The program operates in three modes:
o AVERAGE Mode
e SINGLE BLADE Mode

e SINGLE BLADE Mode-1 (Sequence of blades)
e SINGLE BLADE Mode-2 (Scan of one blade)

Optically averaged clearance of all blades or individual blade clearances are plotted (in mils) on
the 4051's Graphic Display.

In AVERAGE Mode, data are presented on the graphic terminal screen in a plot of “Clearance
versus Scan” (a time history). In the SINGLE BLADE Mode-1 data are presented in a plot of
“Clearance versus Blade Number,” and SINGLE BLADE Mode-2 data are presented in a plot of
“Clearance versus Scan,” (a time history of a selected single blade clearance). Plot formats are
illustrated by Figures 10, 11, and 12.

Each test is initiated by pressing a ‘“‘user” key and test variables are entered by the operator via
the Tektronix 4051 keyboard. The 4051 then activates the appropriate software programs and
instructs the Electronic Subsystem to operate according to the test variable input requirements.

In addition, the program

Provides ZOOM capability for expanded plots, Figure 13.

Provides operator option to record and identify data on the cassette tape.
Provides for data storage file retrieval.

Provides keyboard manual abort capability.

A flow diagram of the system software follows.
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Start
USER KEY
General Header
Output Program
introduction
Operator Input:
Header
Exit Blade Mode
Operator Input:
Number of Blades
Single Blade Mode
No
=
Yes
Operator input: *
Number of Revs/Sample

Operator input:
‘Max/Min Clearance Limits
Clearance Range for Plot.

Single Blade Mode
No

Yes

FD 143467
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Single Blade Mode

Operator input:
Single Blade Mode-1 or -2

Single Blade Mode-2
(Scan of One Blade)

Single Blade Mode-1
(Sequence of Blades)

. Operator Input:
Operator Input:
CD First and Last Blades ( ) Blade Number

) Increment
- ——0
Output to GPIB
Number of Revs/Sample Output to GP1B
Mode Code Number of Revs,

Alarm Codes False Etc
_— - @
Output Blade Number Output Blade
to GPIB Number to GPiB

Read Clearance Data
from GPIB for Specified
Location in Data Array

Read Clearance
Data from GPIB

Hardware Error

Hardware Error Flag? Flag?

120 Scans Read in?

Select Next Blade

All Blades Read in?

FD 143488
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Does Data Exceed Max
or Min Alarm Limits?

Yes

Output Appropriate No
Alarm Code to GPIB

@ -
Generate Plot Axis, Draw Dashed
Lines for Max and Min Clearance
Limits, and Plot Data

Print Axis Units

Compute Average, Max, and Min
Bilade Clearance for Plot

Print General Header Info
on Display

What Blade Mode?
Single Blade Mode-2 Single Blade Mode-1 O
H

i

Average Blade Mode

Print Titie and X-Axis
Units of Max and Min of
Clearance Limits

Print Title and X-Axis Max
and Min of Clearance Limits

Are Max or Min Clearance Limits Exceeded?
Yes, Max Yes, Min
i

——
Print:
Print: “Min Clearance Alarm"
“Max Clear- No
ance Alarm” —— —
Exit FD 143469

N



Continuous Scans Into Data
Array

Hardware Error Flag?

Yes

Average Blade Mode
Output to GPIB
Average Blade Mode Code
Min Clearance Alarm Code False
Max Clearance Alarm Code Faise
Read Clearance Data for

@ : FD 143470
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Hardware Error

Print “Hardware Error”

Wait Routine

What Mode?

ingle
Blade Mode-2

Single Blade Mode-1

FD 143471
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Determine and Print on the TEK
Display the Number of Each Blade
Whose Clearance Exceeds the Max
or Min Clearance Limit. Print “Alarm”

on TEK display

Determine the Blade Number With the
Max Clearance and the Blade Number
With the Min Clearance. Print
Blade Number and Clearance on TEK

Display

Print Title and X-Axis Units

Exit

FD 143472
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USER KEY
Repeat Previous Measurement
for Single Blade Mode-1

USER KEY

Repeat Previous Measurement
for Average Blade Mode

Exit

FD 143473
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USER KEY
Repeat Previous Measurement
for Single Blade Mode-2

=

USER KEY
Recall Data

List File Table

Enter File Number To Be Recailed

Read File from Cassette and
Store in Memory

FO 143474
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USER KEY
ZOOM
Operator Enters Desired Plot
Range for X and Y Axis
USER KEY

Store Data on Tape

List Current File Table

Rewrite on Old Flie?

No

Generate Yes
New File

Enter File To Be
Overwritten

Clear File on Tape

o

Writé Data
Onto File

Exit FD 143475
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USER KEY
Manual Clearance Alarm

Qutput:

Number of Rev's/Samples
Single Blade Mode
Min Clearance Alarm True

Max Clearance Alarm True

FD 143476
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USER KEY
Turn image Intensifier Off

Output: Blade Number 255

Output:
Number of Rev's/Samples
Single Blade Mode
Min Clearance Alarm Code False
Max Clearance Alarm Code False

Exit

FD 143477
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Vil. OPERATIONAL PERFORMANCE EVALUATION TESTS AND DISCUSSION OF RE-
SULTS

A. SUMMARY

A series of laboratory tests was conducted to determine the measurement system’s operational
performance characteristics. Results of these tests are presented. Evaluation of these tests results
demonstrates that the measurement system performance characteristics meet overall program
goals.

B. SCOPE OF TEST

The operational performance evaluation test consisted of a static calibration to define
measurement system accuracy and resolution, and a dynamic evaluation using a laboratory
<imulation of a rotating blade row to demonstrate blade tip clearance measurement capability.
During these tests, all subsystems were checked to ensure proper operation, and documentation
was generated where applicable.

C. TEST RESULTS
Static Calibration

A static calibration was performed with the system probe mounted in a micrometer calibration
fixture. Calibration range was from 0.000 inches (0 mils) to 0.129 inches (129 mils) probe tip to
micrometer face gap, and calibration increment was one diode site. Each calibration point was set
by rotating the micrometer to obtain one diode increment change and then centering on the diode
site by observing at-least one hundred diode array scans on the Tektronix 4051 terminal display
and verifving the desired diode site number presented at a 95° minimum occurrence rate.
Repeatability data were also recorded for two cycles over the calibration range in increments of
25 diode sites upscale and downscale. The calibration data are presented in Table 4.

The 112 points (0-111 diode sites) of calibration data were fit to a third order polynomial equation
using a least squares deviation method.

Mils = A, (DS)® + A, (DS)? + A, (DS) + A,
where: Mils ~ Micrometer Gap (inches X 10-%)
(DS) ~ Diode Site
the curve coefficients of the equation were found to be
A, = —0.00000281
. = 0.00192680

0.97497589
. = —0.11576363

> > >
I

This equation defines the nonlinear characteristics of the system. The accuracy of the polynomial
fit is the variability of the actual calibration data about the fit line. This value was calculated to
be +0.85 mils at the 95% confidence level. The maximum deviation about the fit line was 1.2
mils.

Accuracy = £0.85 mils (+0.022 mm)
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Table 4. Static Calibration, Micrometer Gap (Mils)
vs. Diode Site (DS)

DS MILS DS MILS DS MILS DS MILS
0 0 32 33 64 69.3 96 1085
1 1.2 a3 3.6 65 70.2 97 110.2
2 1.2 u 35.0 66 714 98 1113
3 23 35 35.9 67 72.8 9 1120
4 38 36 31.0 68 74.2 100 113.6
5 4.3 37 38.2 69 75.2 101 1146
6 55 38 400 0 770 102 1165
7 6.9 39 417 7 781 103 117.7
8 8 40 430 72 79.5 104 1188
9 8.8 41 43 73 807 105 1204

10 9.8 42 42 74 818 106 121.3
11 11.2 43 45.3 75 83.0 107 1225
12 12.4 4 45.6 76 84.8 108 1236
13 13.2 45 474 i 85.8 109 1254
14 14.7 46 48.6 78 86.8 110 126.5
15 14.8 47 50.2 9 87.0 111 129.0
16 16.0 48 506 80 885

17 169 49 522 81 897 100 1128
18 18.0 50 53.5 82 91.5 75 82.0
19 193 51 546 8 922 5 531

20 20.6 52 55.6 84 93.2 25 24.9

21 21.6 53 56.3 85 94.7 1 0

2 224 54 570 86  96.0 25 249

23 234 55 58.2 87 97.7 50 53.0

24 24.2 56 59.5 88 98.7 75 82.1

25 25.0 57 61.0 89 100.0 100 1120

26 26.1 58 61.7 0 101.1 111 127.7

27 27.0 59 62.7 91 103.2 100 1128

28 28.2 60 644 - 92 104.2 75 816

29 296 61 649 93 1053 50 527

3 306 62 617 9 106.4 25 243

31 31.8 63 68.6 95 107.8 1 0.0

FR-10200A

An upper limit on measurement system resolution was also obtained from the calibration data.
Since the system has a nonlinear characteristic, the change in displacement corresponding to one
diode site is not uniform. The maximum observed incremental change between diode sites was 2.8
mils, but 97% of the incremental changes were 1.8 mils or less. The 1.8 mil value was used in
establishing the measurement system resolution which was considered to be equivalent to + 1.
the incremental change observed between diode sites (i.e., a deviation in displacement equivalent
to greater than !z diode site would cause the adjacent site to indicate) at a minimum 95

confidence level.

rResolution = 40.90 mils (£0.023 mm) ]

The repeatability calibration data were used to determine system repeatability. Displacements
calculated from the diode site using the 3rd order polynomial were compared to measured
displacements. The maximum deviation observed was —1.84 mils. The repeatability at the 957
confidence level was found to be +1.73 mils.

Repeatability = +1.73 mils (+0.044 mm)

Dynamic Evaluation (Laboratory Simulation Test)

Demonstration of measurement system capability at design conditions was accomplished by

using a laboratory simulation of a rotating blade row.

® Rotor Speed — 60,000 RPM
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Blade Tip Speed — 609.6 m/sec (2,000 ft/sec)
Blade Tip Thickness — 0.79 mm (0.031 in.)
Blade Tip Reflectivity — Test Blade No. 5 (least reflective of six contract test blades).

Number of Blades — 120

The laboratory simulation setup is presented in Figure 14 and included the basic measurement
system, plus

Acousto-Optic Modulator inserted between Laser Attenuator Filter and Objective Lens
Translator

Signal Generator
Acousto-Optic Modulator Driver
120:1 Frequency Divider

Test Blade No. 5 mounted on X-Y Translator adjusted to simulate a tip clearance of 50 mils.

The acousto-optic modulator, controlled by the signal generator and acousto-optic modulator
driver, was used to “‘chop” the laser beam, thus producing the simulated blade passing pulse
train desired. The 120:1 frequency divider, fed by the 120 blade rotor simulation signal from the
signal generator, provided the simulated one per revolution index pulse to the Electronic
Subsystem. The signal generator was adjusted to provide the following input to the acousto-optic
modulator driver:

|enn. 8.3us -

et ———1.3us

5V

The light power output of the modulator was measured (using a Spectra-Physics Power Meter)
to be as follows:
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e 8.3us8 '-‘

e jeatt—— 1,38

!

6.3 mw

— \;Enw _
i

The resulting energy function provides the design condition duty cycle and repetition rate, hut
the energy available to the optical system using this simulation setup (= 8 X 10-° watt-sec) was
only 62% of the energy available to the optical system under *real-life” design conditions (13 ~
10-* watt-sec). This abnormal attenuation has a direct effect on the laboratory performance
evaluation tests following, in that any situation requiring determination of a minimum ““Revs per
Sample” will produce a result which is greater than the realistic value by a factor of
approximately 1.6. Any “Revs per Sample'’ value referred to in this section should therefore he
reduced to 62% of that stated value to obtain a more realistic “Revs per Sample” value.

Figures 15, 16, and 17 demonstrate measurement system performance in the three basic modes of
operation: SINGLE BLADE Mode-1 (sequence of blades), SINGLE BLADE Mode-2 {scan of one
blade), and AVERAGE Mode. These data were obtained using the previously described
laboratory dynamic simulation setup, and they essentially represent the overall measurement
system dynamic performance capability. The minimum ‘‘Revs per Sample” required to obtain a
usable LPA video output signal (0.4 V at peak diode with Image Intensifier tube microchannel
plate gain at maximum) was 100.

Figures 18, 19, 20, and 21 demonstrate measurement system performance primarily in terms of
maximum/minimum clearance limit alarm operation, ‘“‘out of clearance limit” blade number
identification, and “zoom” capability in the three basic modes of operation. These data were
obtained using the laboratory dynamic simulation setup previously described with the exception
of replacing the target test blade with a micrometer calibration fixture. This change permitted a
more manageable variable gap (simulated clearance) technique.

Table 5 provides a map of measurement system performance with respect to the contract’s six
test blades. Using the laboratory dynamic simulation setup previously described and sequentially
placing each of the test blades on the X-Y translator, the measurement system probe viewed
three representatively reflective target locations on each of the blades. These target locations
were arbitrarily assigned to be at 25%, 50%, and 75% chord length. The minimum *“Revs per
Sample” required to obtain a usable Reticon video output signal (0.4 V at peak diode with Image
Intensifier tube microchannel plate gain at maximum) was determined for each target location.
Clearance gap was maintained at approximately 50 mils for all tests, and the blade passing pulse
train was verified to have adequate signal strength to achieve proper blade passing pulse
electronic circuit operation for all tests.
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Table 5. Test Blade Sample Number Requirements

75%
——50%
.25%__l ' e Target Spot Location
| T
1 2 3
* These Locations Required a
Revs Per Sample Revs Per Sample Value Greater
Test Blade 1 2 | 3 than 200. The Reticon LPA
Blade No. 1| 28 | 23 8 Dark Current Becomes Excessive
Blade No. 2| 15 | 40 | 70 With Integration Time
Blade No. 3| 200 | 60 |100 >200 ms, or, in This Test
Blade No. 4| 75| 22 | 16 Case, >200 Revs Per Sample.
Blade No. 51 100 . » The Resulting LPA Video
Blade No. 6| 100 | 150 | 50 Signal Is Not Usable I
Excessive Dark Current Bulldup
Is Present

D. DISCUSSION OF TEST RESULTS

Results of the operational performance tests demonstrate that the measurement system
performance capabilities meet the system design goals. The primary objective of the contract, to
develop and demonstrate the technology required to measure the operating tip clearance of a
selectable single blade, was successfully met. Some unanticipated system characteristics were
encountered during the performance evaluation tests, notably a nonlinearity in the system
calibration data and an apparent deterioration in Image Intensifier tube sensitivity and/or gain.
Investigation and evaluation of these system characteristics was beyond the scope of this
program; therefore, at this point they are simply noted and briefly discussed as possible items to
be addressed in the future.

The accuracy analysis was based on a third order curve fit. Corrections can be made on a first,
second, third, or whatever order is desired when it is decided what type of correction is to be
applied. This correction will yield readings that are truly in mils instead of diode site labeled as
mils.

The nonlinearity encountered in the system calibration data is associated with the system optics
at some point prior to the Image Intensifier tube faceplate. Areas that should be investigated as
the source of nonlinearity include the probe objective lens/light baffle interface and the relay lens
assembly. The probe objective lens/light baffle interface arrangement does not allow the laser
spot image to be projected through the principal axis of the lens. It is felt that the resulting optical
magnification of the laser spot travel as seen at the input to the output fiber optic bundle, may
be nonlinear with respect to a linear change in calibration gap. In addition, a misalignment could
exist between the two lenses of the relay lens assembly or between the relay lens assembly and the
Image Intensifier lens. It is felt that a very slight misalignment in this lens stack-up could result
in nonlinear magnification of the laser spot travel.
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A deterioration in Image Intensifier tube sensitivity/gain characteristics was observed during the
course of the system performance evaluation tests which were conducted after the tube had been
operated for approximately 50 hours. The loes in sensitivity/gain is suspected to have occurred
over only a small area (= 0.75 mm X 6 mm) of the available tube cross section; that is, the optical
channel from the tube faceplate to the LPA. The Image Intensifier tube was designed to allow this
problem to be corrected. The tube should eventually be returned to ITT to have the LPA
relocated to another position on the tube output fiber optic coupler.

Vill. ENVIRONMENTAL PERFORMANCE EVALUATION TESTS AND DISCUSSION OF
RESULTS

A. SUMMARY

The environmental evaluation tests subjected the measurement system probe to vibration,
temperature, and pressure environments typically encountered in an operating gas turbine
engine. Measurement system performance was monitored during these tests to verify no
degradation in measurement capability.

B. ENVIRONMENTAL TEST OBJECTIVES
The measurement system environmental test objectives are summarized as follows:

® To demonstrate that the measurement system probe is capable of operating without

degradation in a typical gas turbine environment where probe adjacent wall temperatures
reach 1311 K.

® To demonstrate that the measurement system probe is capable of operating without

degradation in a typical gas turbine environment where gas path operating pressures reach 30
atmospheres.

¢ To demonstrate that the measurement system probe is capable of operating without
degradation in a typical gas turbine environment where vibration levels encountered are as
high as 12.7 mm/sec in the 50 Hz to 2500 Hz frequency range.

C. ENVIRONMENTAL EVALUATION TEST METHODS AND RESULTS

Temperature Test

The objective of the environmental temperature test was to evaluate measurement system
performance with the probe mounted in a configuration similar to that used in an actual gas
turbine installation, where adjacent wall temperatures vary from near ambient to 1311 K. To
achieve the required simulation, a test rig consisting basically of a 50 mm stainless steel pipe,
150 mm long, and support hardware for the probe was fabricated. One end of the pipe was
inserted into a variable temperature tube furnace which provided the heat source. At the other
end of the pipe, the probe was inserted perpendicular to the pipe axis and through the pipe wall
such that the probe tip was flush with the pipe ID surface, thus providing the simulated
installation. A hole was provided through the pipe wall 180° from the probe tip allowing
calibration micrometer access. To establish the desired wall temperature simulation points, a

thermocouple was attached to the pipe ID approximately 35 mm from the probe tip center and
toward the heat source.

Measurement system performance data were obtained with simulated wall temperatures from
approximately 367 K to 1311 K. At each data acquisition point, a gap of 50 mils was established
by adjusting the micrometer to obtain a zero gap, recording the micrometer reading, and then
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adjusting the micrometer to the zero reading plus 50 mils, thus minimizing any potential errors
induced by thermal growth of the test rig. Measurement system determined gap was recorded at
both the zero gap and the 50 mil gap for each point.

The results of the environmental temperature evaluation test are presented in Table 6, and they
indicate that the measurement system performance is unaffected by adjacent wall temperatures
up to 1311 K. In some cases, the zero and full scale values deviate slightly from the desired 0 mils
and 50 mils values. These discrepancies are not believed to be associated with operation at
elevated temperature, but a combined result of operator’s inability to set desired values and the
measurement system repeatability. It is noted that probe GN, coolant flowrates used in this test
are not to be misconstrued as flowrates required for actual engine tests, as these environmental
test flowrates are much lower. This lower required flowrate is due to the lower heat flux available
from the tube furnace. Also, with reference to Table 6, it is noted that the coolant flowrate was
decreased at the higher wall temperature simulation points. This lower flowrate was required to
achieve the desired adjacent wall temperature.

Table 6. Environmental Temperature Evaluation Test Results

Wall Measurement System Value (Mils) | Probe Coolant

Temperature (K) Zero, Zero+50 Mils Flow (1b/hr)
374 1, 50 43
490 0, 49 43
599 0, 49 4.3
738 0, 50 4.3
872 0, 49 4.3
922 0, 50 43
1033 0, 50 4.3
1142 0, 49 2.9
1253 0, 50 29
1308 0, 49 2.9

Pressure Test

With the measurement system in the normal operating configuration, a fixed gap target adapter
was coupled to the probe tip and adjusted to obtain a system measured gap (simulated clearance)
of 50 mils. The probe body was then inserted into a pressurization adapter which allowed the
probe assembly to be subjected to elevated pressure via the slot opening at the probe tip. In one
atmosphere increments, the probe was pressurized with GN, from ambient to 30 atmospheres.
The measurement system performance was monitored at each pressure setting. No degradation
in performance was observed.

Vibration Test

With the complete measurement system in the normal operating configuration, a fixed gap target
adapter was coupled to the probe tip and adjusted to obtain a system measured gap (simulated
clearance) of 50 mils. The probe body was then hard coupled by adapter fixtures to a vibration
test shaker. The adapter fixtures allowed the probe to be excited in the three mutually
perpendicular principal planes, one plane at a time. In each plane, the probe was subjected to a
constant 12.7 mm/sec velocity excitation sweep from 50 Hz to 2500 Hz of approximately ten
minutes duration. During each excitation sweep, the system measurement performance was
continuously monitored. No degradation in measurement system performance was observed.
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IX. PHOTOGRAPHS OF SYSTEM
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CONCLUDING REMARKS
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A. SUMMARY
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The performance evaluation test results demonstrate that the measurement system performance
capabilities meet the system design goals; however, some characteristics were identified which
could be improved in the future. It is suggested that these items be addressed and resolved in a

follow-on effort. Improvement in overall system capability is also recommended.

B. SUGGESTED PROGRAM FOLLOW-ON ITEMS

The suggested program follow-on effort includes the following items:

® Measurement System Nonlinearity Investigation

This effort would locate the source of the nonlinearity present in the optical
throughput path, provide the necessary design revisions and hardware
changes to obtain a more linear throughput characteristic.

® Image Intensifier Tube Sensitivity/Gain Deterioration Investigation

A very limited amount of basic research information is available on pulsed
mode operating characteristics, including life expectancy, of microchannel
plate (MCP) image intensifier tubes. This suggested effort would include a
study and laboratory tests to better define the pulsed mode operating
characteristics of the ITT F4111 Image Intensifier tube in terms of pulse duty
cycle and repetition rate, tube faceplate spot flux density, MCP voltage, and
sensitivity/gain deterioration rate. The resulits of this effort would provide the
user with information necessary to establish system operating conditions for
maximum tube performance and/or life expectancy.

Improvement in Quverall System Capability

To improve the overall capability of the measurement system, an additional
follow-on effort is suggested to develop a method for time-sharing up to six
probes with the single Remote System, Electronic Subsystem, Tektronix
terminal set-up. This capability would allow the user to economically
monitor blade tip clearance at several rotor stages during the same test
program. The feasibility of mechanically switching multiple optical paths
while maintaining optical throughput integrity appears sound.
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